Improve measurement efficiency and productivity

Up to 20x faster measurement

With a new sensitivity mode (RAPID) specialized for CW light, measurement speed is up to 20x faster than conventional models.

New sensitivity settings optimize measurement time

Sensitivity settings have a significant impact on measurement time. The AQ6380 has two modes and 19 sensitivity settings. Shorten measurement time by selecting the optimum sensitivity according to the type of optical signal and the minimum sensitivity requirement. Measurement sensitivity can also be set numerically. The appropriate sensitivity setting is automatically selected when entering the required minimum sensitivity value.

  • RAPID: Sensitivity mode for fast measurement specialized for CW light
  • TRAD: Traditional sensitivity mode that supports both CW light and pulsed light
Product Price ₵4,500.00
Click to add this item to cart.

Product Description

An optical spectrum analyzer (OSA) measures and displays the power distribution of an optical source over a specific wavelength range. An OSA trace displays power in the vertical scale and the wavelength in the horizontal scale.

Advanced optical spectral analysis enables precise performance characterization across diverse sectors, including telecommunications, consumer electronics, healthcare, life sciences, security, sensing, microscopy, gas/chemical analysis, and environmental monitoring.

For over 40 years, Yokogawa (formerly Ando) has driven continuous advancements in monochrometer design, measurement performance, reliability, and flexible OSA technology.

AQ6380 Highest Performance Optical Spectrum Analyzer 1200 – 1650 nm

The AQ6380 OSA is the highest performance optical spectrum analyzer from Yokogawa Test&Measurement. Its excellent optical wavelength resolution, accuracy, and close-in dynamic range specifications allow optical signals in close proximity to be clearly separated and precisely measured. 

This OSA incorporates smart technology and functionality including an intuitive touchscreen, automated wavelength calibration, and optimized sweep speed, allowing users to operate more efficiently. In addition, the AQ6380 OSA includes gas purging mechanisms, fully-automated wavelength calibration, compatibility with high-resolution and high sample counts, and single-mode fiber input.

Key Features:

  • High wavelength resolution: 5 pm 
  • High wavelength accuracy: ±5 pm 
  • Wide close-in dynamic range: 65 dB 
  • High stray light suppression: 80 dB 

Unparalleled Optical Performance


5 pm high wavelength resolution

The AQ6380 achieves a wavelength resolution of 5 pm. It enables to separate closely allocated DWDM channels and modulation side peaks of optical transceivers.

AQ6380 Optical Spectrum Analyzer High Wavelength Resolution | Yokogawa Test&Measurement

Modulated spectrum of 10G optical transceiver

65 dB wide close-in dynamic range

The monochromator has sharper spectral characteristics than ever. Signals in close proximity (e.g., residual longitudinal modes of external cavity laser) can be clearly separated and accurately measured.

AQ6380 Optical Spectrum Analyzer Close In Dynamic Range | Yokogawa Test&Measurement

Spectrum of external cavity laser

Wide wavelength range and variable resolution support multiple applications

The AQ6380 has a wavelength band of 1200 to 1650 nm. This means a single unit can meet diversifying wavelength measurement needs. Wavelength resolution can be varied from 5 pm to 2 nm, supporting a wide range of applications from narrowband peak/notch measurements to wideband spectral measurements. In addition, the increased resolution contributes to an improvement in measurement speed and accuracy for low power signals.

AQ6380 Optical Spectrum Analyzer Filter | Yokogawa Test&Measurement

Transmission spectrum of optical filter

80 dB stray light suppression

Stray light is optical noise caused by the diffuse reflection of incident light inside a monochromator. In situations such as laser SMSR measurement, where multiple optical spectra with different levels are measured at the same time, the stray light can interfere with the measurement. When this occurs, high stray light suppression performance is required. The AQ6380 provides high dynamic range measurements with excellent stray light suppression performance of 80 dB, with no spurious noise generated.

AQ6380 Optical Spectrum Analyzer Stray Light Suppression | Yokogawa Test&Measurement

Stray light suppression performance

Gas purging mechanism to minimize water vapor absorption

In the near-infrared wavelength range there are wavelength regions where strong light absorption is observed due to the influence of water vapor in the air. In an OSA, there is a wavelength band in which the light absorption characteristics of water vapor inside the monochromator are noticeably detected. Such phenomena interferes with accurate optical spectrum measurements in the applicable wavelength band. The AQ6380 is equipped with a purge mechanism that replaces the air inside the monochromator with nitrogen or dry air by continuously supplying it through dedicated ports on the back panel. This results in accurate measurements that are unaffected by the light absorption phenomenon of water vapor.

AQ6380 Optical Spectrum Analyzer Gas Purge | Yokogawa Test&Measurement

Effect of purging

±5 pm wavelength accuracy

The AQ6380 offers ±5 pm in the C band to meet the most stringent accuracy requirements. It also offers ±10 pm in the S and L bands and ±50 pm over the entire wavelength range. With such accuracy, some applications may not require an optical wavelength meter anymore. Periodic self-wavelength calibration using the built-in wavelength reference light source ensures long-term stability for each measurement.

Automated wavelength calibration maintains high accuracy

Ambient temperature change, vibrations, and shock affect the measurement accuracy of high precision products such as optical spectrum analyzers. The AQ6380 delivers high-precision measurements long-term with the wavelength calibration and alignment adjustment functions using the built-in light source. Wavelength calibration with the internal light source can be performed fully automatically and regularly without an external fiber cord. Wavelength calibration using an external light source is supported and is accomplished by setting the exact wavelength.

Single-mode fiber input

The optical input uses a PC-type single-mode fiber. It achieves an optical return loss of 30 dB or more (even when connected with a PC-type optical plug) and reduces the impact of reflectioni-sensitive optical devices on measurements.

<< return to products